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Let M be a Riemannian manifold (without boundary), and let ∆ be the (negative of)
the Laplace-Beltrami operator. In this note, we consider the wave equation

∂2t u+ ∆u = 0,

with initial data u(x, 0) = v(x), ∂tu(x, 0) = v′(x).
The main purpose of these notes is to prove a general existence and uniqueness theorem,

and to examine some properties of solutions, namely finite speed of propagation. We will not
spend much time in the compact setting, and give a fairly simple (albeit non-elementary)
proof. The main techniques used will be energy methods. As a corollary, we obtain that ∆
is essentially self-adjoint on a complete manifold.

There are myriad ways to prove the following theorem. We use a functional-anayltic
approach, and comment on a few other methods after.

Theorem 1.1 (Existence and Uniqueness for compact manifolds). Let M be a compact
Riemannian manifold without boundary. Then for every v, v′ ∈ D′(M) there exists u ∈
C∞(R;D′(M)) which solves the wave equation

∂2t u+ ∆u = 0

as distributions on M and u(x, 0) = v(x), ∂tu(x, 0) = v′(x) as distributions. Moreover, if
v, v′ ∈ Hs(M) for some s ∈ R, then u(·, t) ∈ Hs(M), too. In particular if v, v′ ∈ C∞(M),
u ∈ C∞(M ×R).

Proof. We use the fact that ∆ has an L2 orthonormal basis of smooth eigenfunctions,
e1, e2, . . ., with associated real, non-negative eigenvalues λi. This affords ∆ with a borel
functional calculus, i.e. we can make sense of the symbol f(∆) for any Borel function
f : R→ C. Explicitly we define

f(∆)ei = f(λi)ei,
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and extend by linearity. We may define (1 + ∆)s via the functional calculus. Using that
(1+∆)s is also an elliptic pseudodifferential operator (see [3, Chapter 2]), we see that Hs(M)
consists of those v ∈ D′(M) for which (1 + ∆)−sv ∈ L2(M) i.e. those v such that

(1 + λi)
2s|〈v, ei〉|2 <∞,

with the above expression also defining an equivalent norm on Hs(M). If v, v′ ∈ D′(M),
then v, v′ ∈ Hs(M) for some s ∈ R. Set

u(x, t) = cos(t
√

∆)v +
√

∆
−1

sin(t
√

∆)v′.

Then it is clear from the definition of the functional calculus that u(x, t) solves the wave
equation with u(x, 0) = v, ∂tu(x, 0) = v′. Here, of course, we are interpreting the Borel
function

√
x
−1

sin(t
√
x) to be extended continuously to be t at x = 0. Since the maps

t 7→ cos(tx) and t 7→ x−1/2 sin(tx1/2) are smooth maps into bounded continuous functions,
it is clear from the functional calculus that u ∈ C∞(R, Hs(M)). u is the unique solution.
Indeed,

0 = 〈u(x, t), ei(x)〉 = 〈∂2t u(x, t) + ∆u(x, t), ei(x)〉
= ∂2t 〈u(x, t), ei(x)〉+ λi〈u(x, t), ei(x),

which means that 〈u(x, t), ei(x) is either of the form A cos(
√
λit) +B sin(

√
λit) if λi 6= 0, or

A + Bt if λi = 0. Since cos(t
√
x) and x−1/2 sin(tx1/2) are 0 and t at x = 0 respectively, we

can rewrite
A+Bt = A cos(

√
λit) +B

√
λi
−1

sin(
√
λit)

for λi = 0, too. Plugging in the initial conditions

〈u(x, 0), ei(x)〉 = 〈v, ei〉

and
∂t〈u(x, 0), ei(x)〉 = 〈v′, ei〉

shows exactly what A,B need to be.

Remark 1.2. A slightly weaker version of this theorem can be proved in a slightly easier
fashion (i.e. avoiding powers of ∆). Namely, one can prove the theorem for initial data in
C∞(M) and H2(M) more generally without using powers of ∆. This is enough to eventually
show essential self-adjointness of ∆. Let D ⊆ L2(M) denote the domain of ∆, i.e. a
domain on which ∆ is closed. It is certainly true that C∞(M) ⊆ D. Since cos(t

√
x) and√

x
−1

sin(t
√
x) are bounded Borel functions, and thus if v, v′ ∈ C∞(M), one may define

u(x, t) as above an obtain (for instance using eigenfunction decompositions) that u(x, t) ∈
C∞(R;L2(M)), without passing to powers of ∆. Since ∆f(∆) = f(∆)∆ for any Borel
f , it follows that ∆u(x, t) solves the wave equation with initial values ∆u(x, 0) = ∆v,
∂t∆u(x, 0) = ∆v′. Thus ∆u(x, t) ∈ L2(M), too. Iterating, ∆nu(x, t) ∈ C∞(R;L2(M)) for
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all n. Since ∆n is elliptic of order 2n, it follows (from a version of elliptic regularity with
parameter) that u(x, t) ∈ C∞(R;H2n(M)) for all n, and thus u(x, t) ∈ C∞(M × R) by
Sobolev embedding.

If one knows that ∆ : H2(M)→ L2(M) is Fredholm, then since im ∆ is closed, one sees
that D = H2(M). From functional calculus (see [4]), we know that u(x, t) ∈ C∞(R, H2(M)).
Remark 1.3. One can also give an alternative proof avoiding an eigenfunction decomposition,
and thus the theory of powers of ∆. One proof is much more in the flavour of microlocal
analysis. One first solves the Wave equation approximately (i.e. modulo smooth terms),
and then corrects these smooth terms via Duhamel’s principle. See [2, Chapter 6, Exercise
6.2]. Uniqueness follows for smooth intial data via energy methods (see below, or [4]), and
for distributional initial data via approximations.

Another method is to explicitly construct a parametrix for the wave equation. A third
method is to use energy methods and Galerkin approximations, such as in [1, Chapter 7]
(the argument must be extended from Rn, but this is not hard). Distributional data still
needs to be handled by approximation.

We would like to prove the previous theorem for non-compact manifolds. Unfortunately,
the theorem would not be true. The key requirement is for M to be complete.

Theorem 1.4 (Existence and Uniqueness for complete manifolds). Let M be a complete
Riemannian manifold without boundary. Then for every v, v′ ∈ D′(M) there exists u ∈
C∞(R;D′(M)) which solves the wave equation

∂2t u+ ∆u = 0

as distributions on M and u(x, 0) = v(x), ∂tu(x, 0) = v′(x) as distributions. Moreover, if
v, v′ ∈ Hs

loc(M) for some s ∈ R, then u ∈ C∞(R;Hs
loc(M)), too. In particular if v, v′ ∈

C∞(M), u ∈ C∞(M ×R).

We will use Thereom 1.1, at least for the torus Tn, together with the following important
proposition, which proves the existence of domains of dependence for the wave equation and
also finite speed of propagation.

Proposition 1.5 (Finite speed of propagation). Let M be a Riemannian manifold. Let
Br(p) be the gesodesic ball of radius R around p (should it exist), and denote by CR(p) the
(open) cone

CR(p) := {(x, t) ∈M ×R : x ∈ BR−t(p)}.
Suppose u ∈ C∞([0, r);D′(M)), and u solves the wave equation

∂2t u+ ∆u = 0

on CR(p) with initial data u(x, 0) = 0, ∂tu(x, 0) = 0. Then u ≡ 0 on Cr(p). The statement
u solves the wave equation on CR(p) means that

〈∂2t u+ ∆u, ϕ〉 = 0

for all ϕ ∈ C∞c (CR−t(p)).
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Proof. We first assume that u ∈ C∞(M × [0, r)). Define the energy on a ball cone Cr(p) by

E(t) =

∫
Br−t(p)

|∂tu|2 + | gradx u|2 dvol.

Then E(0) = 0. We will show that E ′(t) ≤ 0, at least for small time, which implies that
E(t) = 0 for small time. Then we will iterate to show that E(t) = 0 for all t ≤ r.

We will use an integration in polar coordinates lemma. Denote by Sr(p) the geodesic
sphere of radius r

Lemma 1.6. Let M be a Riemannian manifold. If p ∈ M , and expp is a diffeomorphism
from the Euclidean ball of radius ε onto Bε(p), then if u ∈ L1(Bε(p)), and s < ε∫

Bp(s)

u dvol =

∫ s

0

∫
St(p)

u d volSt ds.

Proof. We may change coordinates in the geodesic ball into polar coordinates in Rn. In
these coordinates, the normal to St(p) is the normal to the Euclidean sphere St(p) by the
Gauss lemma. Thus, denoting the metric by g, and integrating in polar coordinates∫

Bp(s)

u dvol = ωn−1

∫ s

0

∫
Sn−1

u
√

det gtn−1 dθdt.

Here θ denotes a coordinate on Sn−1 and ωn−1 is its volume. Now we observe that in
these coordinates,

√
det gtn−1dθ is the volume form of St. This is because in polar normal

coordinates, the metric g looks like (
1 0
0 h

)
where h is the metric of St, and the volume form of tSn−1 is tn−1dθ. This completes the
proof.

Fix p ∈M and R > 0. Now, we may choose δ > 0 small enough so that for all q ∈ BR(p),
expq is a diffeomorphism onto Bδ(q). Using the lemma we can write for r < ε small enough
so that v, v′ are 0 on Br(q),

E(t) =

∫ r−t

0

∫
Ss(q)

|∂tu|2 + | gradx u|2 d volSs ds =

∫ r−t

0

F (s, t) ds.

d volSs is a smooth measure, and so F (s, t) ∈ C∞([0, r)× [0, r)). Thus

E ′(t) = −F (r − t, t) +

∫ r−t

0

∂tF (s, t).

We may compute that

∂tF (s, t) = 2

∫
Ss(q)

〈∂2t u, ∂tu〉+ 〈gradx ∂tu, gradx u〉
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= 2

∫
Ss(q)

〈∆u, ∂tu〉+ 〈gradx ∂tu, gradx u〉

= 2

∫
Ss(q)

div(∂tu gradu)− 〈gradx ∂tu, gradx u〉+ 〈gradx ∂tu, gradx u〉

= 2

∫
Ss(q)

div(∂tu gradu).

So, again using the lemma,∫ r−t

0

∂tF (s, t) = 2

∫
Br−t(q)

div(∂tu gradu) = 2

∫
Sr−t(q)

∂tu∂nu,

where ∂n denotes the normal derivative. By Cauchy-Schwarz,

2

∫
Sr−t(q)

∂tu∂nu ≤
∫
Sr−t(q)

|∂tu|2 + |∂nu|2 ≤
∫
Sr−t(q)

|∂tu|2 + | gradx u|2 = F (r − t, t).

So,
E ′(t) ≤ F (r − t, t)− F (r − t, t) = 0.

In particular, since E(t) ≥ 0 and E(0) = 0, we have that E(t) = 0 for all t < r, and thus
u ≡ 0 on Cr(q). Since this is true for q ∈ BR(p) and r < ε small enough, we obtain u ≡ 0 on

{(x, t) : x ∈ BR−t, t ∈ [0, δ)}.

Now we iterate. u(x, δ− s) = ∂tu(x, δ− s) = 0 for x ∈ BR−s(p) and any s > 0. Since the
δ we chose in the above argument still works for BR−δ−s(p), we iterate to obtain that u ≡ 0
on

{(x, t) : x ∈ BR−t, t ∈ [0, 2δ).

We iterate this k times until kδ ≥ R, at which point we’re done, and u ≡ 0 on CR(p).
Now if u ∈ C∞(R;D′(M)), we will do the same thing, showing that u is 0 for short time,

then iterating. Fix p ∈ M and R > 0. Let δ be as before. Then Bδ(q) is diffeomorphic
to a Euclidean ball. Put Bδ(q) inside some sufficiently large cube, which we identify as a
torus Tn. Let χ be a cutoff of Bδ/2(q) with support contained in Bδ(q). If gij denotes the
Riemannian metric in the Euclidean space, set

g̃ij = χgij + (1− χ)δij.

Then g̃ij is a Riemannian metric on Tn. Let ϕk be a system of mollifiers on Tn, and set

uk(x, t) = (χ(x)u(x, t)) ∗ ϕk(t).

Here of course we have identitified u with its pullback to the chart. Now uk → χu in
C∞(R;D′(Tn)), and χu = u on Bδ/2(q) × R. Furthermore, uk ∈ C∞(Tn × R) and on
Bδ/2(q) ∩BR(p) ∩ {χ = 1},

uk(x, 0) = u(x, 0) = 0
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∂tuk(x, 0) = ∂tu(x, 0) = 0.

Since gij = g̃ij on Bδ/2(q) ∩BR(p) ∩ {χ = 1}, if k is large enough,

∂2t uk + ∆uk = ∂2t u+ ∆u

(we need to take k large enough so that if ψ ∈ C∞c (Bδ/2(q)) then ϕk ∗ ψ is supported inside
the set {χ ≡ 1}). Here of course ∆ is the Laplacian on Tn with the new metric, which agrees
with ∆ on M inside {χ = 1}.

Since uk are smooth, we know from the previous part of the proof that uk ≡ 0, at least
on CR(p) ∩ Cδ/2(q), thus u ≡ 0 there, too (by this we mean that the distribution u(·, t) is 0
when acting on C∞c (BR−t(p) ∩ Cδ/2−t(q))).

Thus as above, u is 0 for time at least δ/2 on CR(p). We then iterate to show that u ≡ 0
on CR(p).

Proof of Theorem 1.4. The first step is to solve the wave equation for initial data in C∞c (M)
and show that a solution is in C∞(M ×R).

The strategy (c.f. [4]) will to use the finite speed of propogation to reduce to the compact
case. Finite speed of propagation already shows uniqueness. We will show the following:

Claim. If v, v′ ∈ D′(M), then for all p ∈ M and R > 0, there is u ∈ C∞([0,∞);D′(M))
which solves

∂2t u+ ∆u = 0

on CR(p) with u(x, 0) = v(x) and ∂tu(x, 0) = v′(x). Furthermore, if v, v′ ∈ Hs
loc(M), then

u(·, t) is of class Hs
loc(BR−t(p)).

First we will show how the claim proves the Theorem. The claim shows that we can solve
the wave equation in all cones. We simply define a global solution by setting u(x, t) = w(x, t)
for (x, t) belongs to some cone, and w a solution in the cone as constructed in the claim.
To be precise, if (x, t) ∈ CR(p), then if w(x, t) is a solution in CR(p), we set u(·, t) = w(·, t)
when acting on C∞c (BR−t(p)). This is well-defined. In fact, let w be a solution in CR(p) and
w̃ be a solution in CS(q), and let Br(x) ∈ BR−t(p)∩BS−t(q). Then Cr+t(x) ⊆ CR(p)∩CS(q).
Since w, w̃ are both solutions in Cr+t(x) with the same initial data, then by finite speed
of propagation they must agree on Cr+t(x), and hence w(·, t) = w̃(·, t) when acting on
C∞c (Br(x)). This shows that u is well-defined. This solves the wave equation for all positive
time. However, we can also solve the wave equation for all negative time by the same
argument. That the solution is smooth at 0 again follows from finite speed of propagation,
since we can solve the wave equation in (−∞, 1], as well.

Now we prove the claim. We will show that for all p ∈ M there exists a non-increasing
function ε(R) so that if v, v′ ∈ D′(M), there is a solution u ∈ C∞([0, ε(R);D′(M)) to the
wave equation on

{(x, t) : x ∈ BR−t(p), t ∈ [0, ε(R))}
with intial data v, v′. Then we may interate the argument on BR−ε(R)−s(p) (for any s > 0)
to show that there is a solution ũ to the wave equation on

{(x, t) : x ∈ BR−ε(R)−s−t(p), t ∈ [0, ε(R))}
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with intial data u(x, ε(R)−s). Now u(x, t) and ũ(x, t) both solve the wave equation, at least
for t ∈ [ε(R)− s, ε(R)) and appropriate x, and have the same initial data at time ε(R)− s,
and thus must be the same on these domains. Thus ũ extends u by at least time ε(R) − s
into the future in the cone CR(p). We now need to piece them together outside the cone,
and we do this bruttaly. For r > 0 let χ be a cutoff of CR−r(p) supported in CR(p). Then
χu and χũ are 0 outside of CR(p), and thus agree there, and are equal inside (at least for
the times for which they’re both defined). Thus we can peice them together to obtain that ũ
extends u into the future (for a time as close to ε(R) as we like). Of course, we’ve shrunken
the size of the set on which they are solutions are defined, but this will not matter in the
end.

Now we iterate this argument, each time increasing the time a solution exists by time as
close to ε(R) as we like, and each shrinking the area on which the solution is defined. If we
shrink by less and less each time, we eventually will find a solution on all of CR/2(p). Since
R was arbitrary, we could have started with 2R to find a solution on CR(p).

Now to find ε(R). Choose δ > 0 small enough so that expq is a diffeomorphism from the
Euclidean ball of radius δ onto Bδ(q) for all q ∈ BR(p). Write Bδ(0) for the ball in Euclidean
space diffeomorphic to Bδ(q) via expq. Then there is some cube containing Bδ(0). Identify
this cube with the torus. Let χ be a smooth cutoff of Bδ/2(0) with supported contained
inside Bδ(0) inside the torus. Consider the metric on the cube (and hence the torus) given
by

g̃ij = χgij + (1− χ)δij,

where gij is the metric on Bδ(0) induced via expq from M . If v, v′ ∈ D′(M), denote also by
v its pullback to Bδ(0). Since the torus is compact, We may then solve the wave equation
on the torus with the metric g̃ij with initial data χv. Call this solution uq. Since g̃ij = gij
in Bδ/2(0), the pushforward of uq to M , defined on Bδ × [0,∞), solves the wave equation in
Cδ/2(q) with initial data v, v′.

Now we may define u = uq in Cδ/2(q). This is well-defined for the same reasons as above,
namely if (x, t) ∈ Cδ/2(q)∩Cδ/2(q′), then (x, t) ∈ Cδ′(x), and uq, uq′ solve the wave equation
in Cδ′(x) with the same initial data. The collection of cones Cδ/2(q) cover

{(x, t) : x ∈ BR−t(p), t ∈ [0, δ/2)},

so we thus have a solution in this region. By definition δ can only increase as R decreases,
and so the claim is proved. That the regularity persists is obvious.

Remark 1.7. Completeness was used every time the existence of BR(p) was; on a general
Riemannian manifold, BR(p) does not make sense for all p and R.

Corollary 1.8. Let M be a complete Riemmanian manifold. Then ∆ is essentially self-
adjoint. In particular, ∆ has a functional calculus.

Proof. We have solved the wave equation on M by Theorem 1.4. The corollary now follows
from [4, Theorem 7, Exercise 29].

7



References

[1] L. Evans, Partial Differential Equations. American Mathematical Society, Rhode Island, 2010.

[2] A. Grigis and J. Sjörstrand, Microlocal Analysis for Differential Operators. Cambridge University Press,
Cambridge, 1994.

[3] M. Shubin, Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin, 2001.

[4] T. Tao, The spectral theorem and its converses for unbounded
symmetric operators. https://terrytao.wordpress.com/2011/12/20/
the-spectral-theorem-and-its-converses-for-unbounded-symmetric-operators/

8

https://terrytao.wordpress.com/2011/12/20/the-spectral-theorem-and-its-converses-for-unbounded-symmetric-operators/
https://terrytao.wordpress.com/2011/12/20/the-spectral-theorem-and-its-converses-for-unbounded-symmetric-operators/

